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Outer interval solution of linear systems with 
parametric interval data 

El-Owny, Hassan Badry Mohamed A. 
 

Abstract—  This paper addresses the problem of solving linear systems of equations whose coefficients are depend affine-linearly on 
parameters varying within prescribed intervals. Such systems, are encountered in many practical problems, e.g in electrical engineering 
and mechanical systems. A C-XSC(C- for eXtended Scientific Computing) implementation of a symmetric single step method for computing 
an outer enclosure for the solution set is proposed in this paper. Numerical examples illustrating the applicability of the proposed.      

ndex Terms—    symmetric single step method, parametric linear systems, validated interval software, C-XSC.   

——————————      —————————— 

1 INTRODUCTION                                                                     
N   many practical applications [1], parametric  systems involving 
uncertainties in the parameters have to be solved. In most engi-
neering design problems, linear prediction problems, models in 

operation research, etc. [2,3] there are usually complicated depend-
encies between coefficients. The main reason for this dependency is 
that the errors in several different coefficients may be caused by the 
same factor [4,5]. More precisely, consider a parametric system 

),()( pbxpA =⋅                           (1) 
where nnpA ×ℜ∈)(  and npb ℜ∈)(  depend affine linearly 
on a parameter vector kp ℜ∈ . 
Since, each individual component of )( pA , )( pb  is an affine-
linear combination of the k  parameters  [6] 

     𝑎𝑖𝑗(𝑝) ≔ 𝑎𝑖𝑗
(0) +∑ 𝑝𝛾𝑎𝑖𝑗

(𝛾),𝑘
𝛾=1 𝑏𝑖(𝑝) ≔ 𝑏𝑖

(0) + ∑ 𝑝𝛾𝑏𝑖
(𝛾)  𝑘

𝛾=1     
(2) 
Denote the 1+k  numerical matrices 

nnk
ij

k
ijij aAaAaA ×ℜ∈=== )(:,),(:),(: )()()1()1()0()0(   

and the corresponding numerical vectors  
.)(:,),(:),(: )()()1()1()0()0( nk

i
k

ii bbbbbb ℜ∈===   
Hence, the parametric matrix and the right-hand side vector 
can be represented by 
𝐴(𝑝): = 𝐴(0) +∑ 𝑝𝛾𝐴(𝛾)𝑘

𝛾=1 ,𝑏(𝑝): = 𝑏(0) +∑ 𝑝𝛾𝑏(𝛾)𝑘
𝛾=1   

and the parametric system (1) can be rewritten in the follow-
ing form 
    (𝐴(0) +∑ 𝑝𝛾𝐴(𝛾))𝑥 =𝑘

𝛾=1 𝑏(0) +∑ 𝑝𝛾𝑏(𝛾)𝑘
𝛾=1                            (3) 

where the parametric vector p  varies within the range 
[ ] kIp ℜ∈  . 
The solution set of (3), called parametric solution set, and is 
defined as 

∑𝑝 ≔ ∑(𝐴(𝑝),𝑏(𝑝), [𝑝])
≔ {𝑥 ∈ ℜ𝑛|𝐴(𝑝) ∙ 𝑥 = 𝑏(𝑝) for some 𝑝 ∈ [𝑝]} 
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Since the solution set has a complicated structure (it does not even 
need to be convex), which is difficult to find, one looks for the inter-
val hull )(∑◊  here Σ is a nonempty bounded subset of  nℜ . For 

nℜ⊆∑ , define nn IP ℜ→ℜ  by1  
[ ] [ ] [ ]{ }.|sup,inf:)( xIx n ⊆∑ℜ∈∩=∑∑=∑◊  

The calculation of )(∑◊  is also quite expensive. 
Since it is quite expensive to obtain p∑ or )( p∑◊ , it would be a 
more realistic task to find an interval vector [ ] nIy ℜ∈  which tightly 
encloses p∑  ([ ] ppy ∑⊇∑◊⊇ )(  ) . 
Probably the first general purpose method computing outer 
(and inner) bounds for  )( p∑◊  is based on the fixed-point in-
terval iteration theory developed by S. Rump. In [7] Rump ap-
plies the general verification theory for system of nonlinear 
equations for solving parametric linear systems involving af-
fine-linear dependencies. This method was generalized in [8] 
by proving that a sharp enclosure of the iteration matrix ex-
pands the scope of application of the method over problems 
involving the so-called column-dependent matrices. Mean-
while, there were many attempts to construct suitable methods 
for solving parameter dependent interval linear systems [1, 
3,4,9 ,6,10,11,12] 
In practice it is usually required that the matrix A(p)  is an H-
matrix. 
The goal of this paper is to introduce a new C-XSC software (C- 
for Extended Scientific Computing)[13] for the symmetric 
single step method by using Interval Centered Form to tightly 
enclose multivariate nonlinear functions to find the solution set 
of parametric interval systems, i.e., interval vectors, which 
contain all possible solutions of this system. We will compare 
our method to other methods. 
  The paper is organized as follows. In Section 2 some Basic 
notations is introduced. In section 3 the dependency problem is 
presented. The Interval Centered Form is introduced in Section 
4. The main results of this paper are presented in Section 5. 
Another modification for the symmetric single step method is 
introduced in Section 6.  Numerical and practical examples  
1  nPℜ is the power set over nℜ  . Given a set S, the power set of S 
is the set off all subset of S 
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illustrating the features of the proposed method are provided 
in Section 7. The paper ends with concluding remarks. 
 

2 BASIC NOTATIONS 
We use the following notations  ,,,,, nnnn II ℜℜℜℜℜ ×   
nnI ×ℜ , to denote the set of real numbers, the set of real vectors 

with n components, the set of real n×n matrices, the set of in-
tervals, the set of interval vectors with n components and the 
set of n×n interval matrices, respectively. By interval we mean 
a real compact interval 

[ ] [ ] { }bxaxbax ≤≤ℜ∈== |:,:  
For [ ] [ ] [ ] ℜ∈= Idcyx ,:, we define 

• The mid-point [ ] 2
)(:)(mid bax += , 

• the Radius  [ ] 2
)(:)(rad abx −=   , 

• the absolute value  [ ] { }bax ,max:= , 

• the distance [ ] [ ] { }dbcayxq −−= ,max:),( , 
• minimal absolute value (mignitude) 

 
[ ] [ ]{ }

{ } [ ]






 ∉

=∈=

else0
0if,min

:min:
xba

xxxx =
                (4) 

For interval vectors and interval matrices, these quantities 
are defined componentwise.  
If for two interval vectors [ ] [ ] nIvu ℜ∈,  we have  
[ ] [ ] ,,,2,1, nivu ii =≠∩ φ then  [ ] [ ] [ ] [ ]( ),: ii vuvu ∩=∩  
otherwise [ ] [ ] φ=∩ :vu . In addition , for [ ] [ ] nIRvu ∈, we 
define [ ] [ ]vu ⊆  iff  [ ] [ ] nivu ii ,,2,1, =⊆ . Furthermore, 
we repeat some relations concerning the  distance: 

[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] nIzwvu

zvqwuqzwvuq
vuqwvwuq
vwqwuqvuq

ℜ∈
+≤++

=++
+≤

,,,if
),,(),(),(

),,(),(
),,(),(),(

 

For square interval matrices we define the comparison matrix 
(Ostrowsky matrix) 
[ ] nn

ijcA ×ℜ∈= )(:=  using (4) by setting 

[ ]





=
≠−

=
.if

,if
:

jia
jia

c
ij

ij
ij

=
 

A square matrix [ ] nnIA ×ℜ∈  is called regular if all [ ]AA∈  are 
nonsingular. 
If [ ] [ ]AA ⋅)(mid  is regular then [ ]A  is strongly regular. An 
interval matrix [ ]A  is an H-matrix iff there exist a vector 0>v   
such that [ ] 0>vA = . 
Definition 1 [14] Let nnCBA ×ℜ∈,, . Then CBA −=  is a regular 
splitting of A  if 0≥C  and B is nonsingular with 01 ≥−B . 
Theorem 1 [14] Assume that nnA ×ℜ∈  is nonsingular, 
that 01 ≥−A  and that CBA −=  is a regular splitting of  A . 
Then 1)( 1 <− CBρ  , where )(ρ  denotes the spectral radius of a 
matrix. 
 
Regular splitting was introduced in [14], where one can also 
find the proof of Theorem 1. 

 

3 DEPENDENCY PROBLEMS 
The dependency problem arises when one or several variables 

occur more than once in an interval expression. Dependency may 
lead to catastrophic overestimation in interval computations. For 
example, if the interval [𝑥] = [1,2] is subtracted from itself        
[𝑥] − [𝑥] = [1,2]− [1,2] = [−1,1] is obtained as the result and not 
the interval [0,0] as expected. Actually, interval arithmetic cannot 
recognize the multiple occurrence of the same variable[𝑥]. The result 
is {𝑥 − 𝑦|𝑥 ∈ [𝑥], 𝑦 ∈ [𝑦]}  instead of{x − x | x ∈  [x]}. In general, 
when a given variable occurs more than once in an interval computa-
tion, it is treated as a different variable in each occurrence. 
For a less extreme example, take f(x) = (5 + x) ∙ (5− x)  for 
x ∈  [x] = [−1,1]. Using the basic formulas of standard interval 
arithmetic[15,16], we get 

5 + [𝑥] = [4,6]
5− [𝑥] = [4,6]
(5 + [𝑥]) ∙ (5− [𝑥]) = [6,16]

 

The interval formulas give an interval whose diameter is 20, whereas 
the exact interval result f([x])= [24, 25] has a diameter of only 1. 
Note that when one operand in the product 
(5 +  x) ∙  (5− x) is at the maximum value 6, the other must be at 
the minimum value 4; the combination 4∙ 4 and 6∙6, which gave the 
extreme values of  F ([x]), never occur. 
A simple remedy for this example is to rewrite (5 + x) ∙ (5-x) = 25 – 
x2 , which has only one occurrence of the variable x. An interval 
computation of this new expression will give the exact result. Unfor-
tunately, this remedy is often impossible to apply in practice. 
Several other methods have been proposed to attack the dependency 
problem. The main class of methods is known as generalized interval 
arithmetic [17,18], in several incarnations and generalizations, such 
as mean-value form [2] and slopes [19]. The purpose of Interval 
Centered Form [20] is to reduce the effect of the dependency prob-
lem when computing with standard interval arithmetic. 

4 INTERVAL CENTERED FORM 
Given any real rational expression f(p1, p2,⋯ , pk) and any vec-

tor of real numbers 𝑐 = (c1, c2,⋯ , ck) at which the value of f  is 
defined  (i.e., not at a singularity of f), we can write f as [16,19] 
𝑓(p1 , p2,⋯ , pk) =  f(c1, c2,⋯ , ck) + g(p1 − c1, p2 − c2,⋯ , pk − ck)        (5) 
by substituting 𝑝𝑖 = ci + ui, i = 1,2,⋯ , k into the expression for  
f(p1, p2,⋯ , pk)  and forming 
g(p1 − c1, p2 − c2,⋯ , pk − ck) = g(u1, u2,⋯ , uk)

= 𝑓(u1 + c1, u2 + c2,⋯ , uk + ck)− f(c1, c2,⋯ , ck)           (6) 

By using (6) to form the expression for g in (5), we can substitute 
interval variables [u1],⋯ , [uk] for the real variables 
u1,⋯ , uk occurring in the expression for g(u1,⋯ , uk) and obtian an 
expression we can denote by  g([u1],⋯ , [uk]); interpreting the 
arithmetic operations as interval arithmetic operations, the resulting 
expression g([u1],⋯ , [uk]) is a rational  interval expression. 
We form the expression 
𝐹([p1], [p2],⋯ , [pk]) =    f(mid([p1]), mid([p2]),⋯ , mid([pk])) +
g([p1]−mid([p1]), [p2]−mid([p2]),⋯ , [pk]−mid([pk]))       (7) 
corresponding to (5) by substituting  [pi]−mid([pi]) for [𝑢𝑖] in the 
rational interval expression g([u1],⋯ , [uk]). 
The equation (7) then, gives an Interval Centered Form of a rational 
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interval expression with real restriction f(u1,⋯ , uk)  

5 ITERATIVE METHOD 
In this section we assume that the reader is familiar with 

the concept P contractions for proving the convergence of a 
fixed point iteration to a unique fixed point for an arbitrary 
starting vector. For the details please see [15,21]. 

 
5.1  The symmetric single step method 
     We assume throughout that the matrix )( pA  is nonsingu-
lar, and moreover that its diagonal entries )( paii  are all non-
zero. We can express the matrix )( pA  as the matrix sum 
[14,15] 

),()()()( pUpLpDpA ++=                                 (8) 
Where )( pD  is a diagonal matrix, and  )( pL  and )( pU  
are respectively strictly lower and upper triangular matrices. 
We can write (1) as 

xpUpLpbxpD ⋅+−=⋅ ))()(()()(                          (9) 
Then 

),)()(()(()(1 xpUpLpbpDx ⋅+−⋅= −                (10) 
where 
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Since the diagonal entries )( paii  of  )( pA  are nonzero, we 
can carry out the following iterative method derived from (9): 
[ ] [ ] [ ]∑ ∑

−

= +=

++ ≤≤−−=
1

1 1

21()21( ,1),()()()((
i

j

n

ij
ii

l
jij

l
jiji

l
i nipaxpaxpapbx                       (14) 

   [ ] [ ] [ ]∑∑
+=

+
−

=

++ ≥≤≤−−=
n

ij
ii

l
jij

i

j

l
jiji

l
i lnipaxpaxpapbx

1

1
1

1

21()1( 0,1),()()()((      (15) 

where the [𝑥(0)]′𝑠 initial interval vector. We call this iteration 
procedure the symmetric single step method. By using (2) we 
can rewritten (14) and (15) in the following form: 
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5.2  The symmetric single step method with interval centered 
form  

If we have a deep look in the equations (16) and (17), 
we can find that the parametric 𝑝𝛾 , (γ = 1,2,⋯ , k) occurs more 
than once (between the numerator and and denominator). In 
general, when a given variable occurs more than once in an 
interval computation, it is treated as a different variable in 
each occurrence. This causes widening of computed intervals 
and makes it more difficult to obtain sharp result in calcula-
tions. One should always be aware of this consideration and 
take appropriate steps to reduce its effect. We have discussed 
a way to do this in last section called Interval Centered Form. 
In our case, from (16) and (17), the rational function will be in 
the form: 

𝑓(𝑝1,𝑝2,⋯ ,𝑝𝑘) = ∑ [𝛼𝑖]𝑝𝑖𝑘
𝑖=0
∑ 𝛽𝑗𝑝𝑗𝑘
𝑗=0

                                             (18) 

where [α] and β are interval vector and real vector respective-
ly, and p0=1. Then the interval centered form of this function 
will be in the following form: 
∑ [𝛼𝑖𝑘
𝑖=0 ]𝑝𝑖
∑ 𝛽𝑗𝑘
𝑗=0 𝑝𝑗

= ∑ [𝛼𝑖𝑘
𝑖=0 ]∙mid([𝑝𝑖])
∑ 𝛽𝑗∙mid([𝑘
𝑗=0 𝑝𝑗])

+
∑ ∑ (𝛽𝑖𝑘

𝑗=1 [𝛼𝑗𝑘
𝑖=0 ]−𝛽𝑗[𝛼𝑖])mid([𝑝𝑖])∙rad([𝑝𝑗])

∑ 𝛽𝑗∙mid([𝑘
𝑗=0 𝑝𝑗])(∑ 𝛽𝑗∙mid([𝑘

𝑗=0 𝑝𝑗])+∑ 𝛽𝑖∙rad([𝑘
𝑖=1 𝑝𝑗]))

      (19) 

By using the equation (19) in the equations (16) and (17), we 
can get better results. 
 
Theorem 2. Consider parametric linear system (1), where )( pA  
and )( pb  are defined by 
     

),,2,1,(,:)(

,:)(

1

)()0(

1

)()0(

njibpbpb

apapa

k
iii

k
ijijij

=+=

+=

∑

∑

=

=

n

n
n

n

n
n  

We define )( pL  , )( pU   and )(1 pD−  as in (11), (12) and (13), 

respectively. Then, the sequence [ ]∞=0
)(

l
lx  calculated according to the 

iteration method (symmetric single step method defined as in (16) 
and (17)), converges for all interval vectors  [x(0)]∈ nIℜ  [x∗], where 
[x∗] is the unique fixed point of the equation (10). 
 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013                                                               1435 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org  

6 MODIFICATION 
In this section we consider modifications of the preceding it-

erative methods which are based on the fact that if for any of 
these methods one is starting with an interval vector containing 
the limit, then all iterates contain the limit. Therefore the enclo-
sure of the limit might be improved by forming intersections af-
ter each iteration step. 
 
Symmetric single step method with intersection 
Theorem 4. Let nnpA ×ℜ∈)(  and nnpb ×ℜ∈)(  be given. We define 
L(p), U(p) and D−1(p) as in (11), (12) and (13), respectively. Let 
[x∗] is the unique fixed point of the equation (10). We assume 
that we have an interval vector [initial] ∈ nIℜ satisfying 
[x∗]⊆[initial]. We consider the Symmetric single step method 
with intersection. 
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Then [ ] [ ]∗

∞→
= xx l

l

)(lim  
To get an interval vector [initial]. We assume that nnpA ×ℜ∈)(  

and that nnpb ×ℜ∈)(  is an H-matrix. Let        D−1(p), L(p), U(p) 
and [x∗] defined as in Theorem 2. Then we consider symmetric 
single step method with arbitrary [x(0)]. 
We assume that 

[ ][ ] [ ][ ] [ ][ ],)()()(: 1 pUpLpDP += −=  where 1)( <Pρ  (see Theorem 
11.4 in [1]).  
For lm >  we get [2]: 
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Since [ ] [ ]∗
∞→

= xx m

m

)(lim , it holds that (set l := 1) 

( [ ] [ ] ) ( [ ] [ ] ) ,:,)(, )0()1(1)( uxxqPIPxxq l =⋅−⋅≤ −∗   
Then 

uxxxux ll +≤≤− ∗ )(*)( ,  
Hence, we get  [ ] [ ] [ ]initial:, )()(* =+−⊆ uxuxx ll  
 
Algorithm 1. Parametric interval linear systems (H-Matrix) 
1. Computation of an initial interval vector 
      [ ][ ] [ ][ ] [ ][ ],)()()(: 1 pUpLpDP += −=  

      [ ] [ ] 0,,:initial )()( ≥+−= luxux ll   
2. Verification step 
     [x(1)] := [initial] 
    repeat 
       if intersection = 0 then 

          Using equations ( (16) and (17)) with (19) 
      else Using equation (20) with (19) 
until [x(l+1)] and [x(l)] are equals 
6. 
     if [x(l+1)] and [x(l)] are equals then 
        x̂  ∈ [x(l+1)] ( x̂  the exact solution) 
   else no inclusion can be computed 

7 NUMERICAL AND PRACTICAL  EXAMPLES  
Example(1): 
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x
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where: p1 ∈ [−0.6,−0.4], p2 ∈ [1.8, 2.2] 
iteration =9, 
Proposed method Elaraby [22] Popova [4] 
[4.808641,6.833334] [4.843137,7.000000] [4.877162,6.551409] 
[2.521604,4.388889] [2.607843,4.666667] [2.598498,4.258645] 
 
Example(2): 
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1
1

3
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x
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where: p ∈ [0, 1] 
iteration =2, 
Proposed method Elaraby [22] Popova [4] 
[0.111111,0.333334] [0.111111,0.333334] [0.177533,0.772466] 

[0.111111,0.333334] [0.111111,0.333334] [0.080561,0.469439] 

[0.111111,0.333334] [0.111111,0.333334] [-0.382168,0.132168] 
N.B . We got the same result as Elaraby, because there is no de-
pendency will be happened between the parameters.   
 
Example(3): 
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where: p1 ∈ [0.4, 0.5], p2 ∈ [0.2, 0.3] 
iteration =10, 
Proposed method Elaraby [22] Popova [4] 
[−0.440114,−0.056444] [-0.776142,-0.132614] [-0.468005,-0.022753] 
[3.604649,4.597432] [3.325426,5.114795] [3.631414,5.540667] 
[1.258164,1.460008] [1.103743,1.69829] [1.256884,1.461288] 
 
Application: 
      we consider a linear resistive network, presented in [23,24]. 
The resistive network consists of two current sources J1  and J2  
and nine resistors. The problem of finding the voltages 

,,, 51 vv  when the voltage of each conductance 

9,,2,1, =igi  varies independently in prescribed bounds 

[ ] 9,,2,1, =ig i
, leads to the following parameterized  lin-

ear system 
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where TJ )0,0,10,0,10(= and the parameters are 
subject to tolerances [ ] [ ] 9,,2,1,1,1 =+−= ig i δδ . 
We solve the system for different values of the tolerances 
δ  varying from 0.1% to 10% of the nominal value. 
iteration =24, tolerance=0.1% 
Proposed method HBR method [23] Elaraby [22] Popova [3] 

[7.01793,7.16388] [6.8693, 7.2950] [6.89898,7.29765] [7.01337,7.16844] 

[4.13776,4.22587] [4.0689, 4.4971] [3.97569,4.40530] [4.11566,4.24797] 

[5.39797,5.51111] [5.2501, 5.6612] [5.26906,5.65655] [5.39177,5.51732] 

[2.15854,2.20509] [2.0183, 2.3568] [2.04981,2.32733] [2.13647,2.22716] 

[1.07903,1.10278] [1.0397, 1.1931] [1.00461,1.18717] [1.05937,1.2244] 

8 CONCLUSION 
       The problem of solving parametric linear systems of equa-
tions is very important in practical applications. A simple method 
for determining an outer solution to the linear system considered 
has been suggested in section 5 by using the method presented in 
section 4. Some numerical and practical examples are solved. 
The methods that presented can be applied to big real life prob-
lems such as structural engineering [3,12] without any problems. 
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